
Renewable energy technologies
Renewable energy technologies are essential contributors to sustainable energy as they generally contribute to world energy security, reducing dependence on fossil fuel resources, and providing opportunities for mitigating greenhouse gases.
The International Energy Agency states that:
Conceptually, one can define three generations of renewables technologies, reaching back more than 100 years .
First-generation technologies emerged from the industrial revolution at the end of the 19th century and include hydropower, biomass combustion, and geothermal power and heat. Some of these technologies are still in widespread use.
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy, and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
Third-generation technologies are still under development and include advanced biomass gasification, biorefinery technologies, concentrating solar thermal power, hot dry rock geothermal energy, and ocean energy. Advances in nanotechnology may also play a major role.
—International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet[5]
First- and second-generation technologies have entered the markets, and third-generation technologies heavily depend on long term research and development commitments, where the public sector has a role to play.
A 2008 comprehensive cost-benefit analysis review of energy solutions in the context of global warming and other issues ranked wind power combined with battery electric vehicles (BEV) as the most efficient, followed by concentrated solar power, geothermal power, tidal power, photovoltaic, wave power, coal capture and storage, nuclear energy, and finally biofuels.
Plants and Energy
Biofuels – liquid fuels derived from plant materials – are entering the market, driven by factors such as oil price spikes and the need for increased energy security.
Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in Brazil (Ethanol fuel in Brazil, where 100% of the gas stations sell it and all gas contains 25% of bioethanol) and in the USA.
Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.
Biofuels provided 1.8% of the world’s transport fuel in 2008. Investment into biofuels production capacity exceeded $4 billion worldwide in 2007 and is growing.
First generation biofuels
'First-generation biofuels' are biofuels made from sugar, starch, vegetable oil, or animal fats using conventional technology.[2] The basic feedstocks for the production of first generation biofuels are often seeds or grains such as wheat, which yields starch that is fermented into bioethanol, or sunflower seeds, which are pressed to yield vegetable oil that can be used in biodiesel. These feedstocks could instead enter the animal or human food chain, and as the global population has risen their use in producing biofuels has been criticised for diverting food away from the human food chain, leading to food shortages and price rises.
1.Ethanol
Alcohol fuels are produced by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane, molasses and any sugar or starch that alcoholic beverages can be made from (like potato and fruit waste, etc.). The ethanol production methods used are enzyme digestion (to release sugars from stored starches), fermentation of the sugars, distillation and drying. The distillation process requires significant energy input for heat (often unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is pressed to extract its juice, can also be used more sustainably
2.Biodiesel
Feedstocks for biodiesel include animal fats, vegetable oils, soy, rapeseed, jatropha, mahua, mustard, flax, sunflower, palm oil, hemp, field pennycress, pongamia pinnata and algae.
3.Solid Biofuels
Examples include wood, sawdust, grass cuttings, domestic refuse, charcoal, agricultural waste, non-food energy crops (see picture), and dried manure.
Second generation biofuels
Supporters of biofuels claim that a more viable solution is to increase political and industrial support for, and rapidity of, second-generation biofuel implementation from non food crops.
Second-generation biofuel production processes can use a variety of non food crops. These include waste biomass, the stalks of wheat, corn, wood, and special-energy-or-biomass crops (e.g. Miscanthus). Second generation (2G) biofuels use biomass to liquid technology[25], including cellulosic biofuels from non food crops.[26] Many second generation biofuels are under development such as biohydrogen, biomethanol, DMF, Bio-DME, Fischer-Tropsch diesel, biohydrogen diesel, mixed alcohols and wood diesel.
Cellulosic ethanol production uses non food crops or inedible waste products and does not divert food away from the animal or human food chain. Lignocellulose is the "woody" structural material of plants. This feedstock is abundant and diverse, and in some cases (like citrus peels or sawdust) it is in itself a significant disposal problem.
The recent discovery of the fungus Gliocladium roseum points toward the production of so-called myco-diesel from cellulose. This organism was recently discovered in the rainforests of northern Patagonia and has the unique capability of converting cellulose into medium length hydrocarbons typically found in diesel fuel.
Third generation biofuels
Algae fuel, also called oilgae or third generation biofuel, is a biofuel from algae. Algae are low-input, high-yield feedstocks to produce biofuels.
Based on laboratory experiments, it claimed that Algae can produces up to 30 times more energy per acre than land crops such as soybean, but these yields have yet to be produced commercially. With the higher prices of fossil fuels (petroleum), there is much interest in algaculture (farming algae).
One advantage of many biofuels over most other fuel types is that they are biodegradable, and so relatively harmless to the environment if spilled.
Algae fuel still has its difficulties though, for instance to produce algae fuels it must be mixed uniformly, which, if done by agitation, could affect biomass growth.
The United States Department of Energy estimates that if algae fuel replaced all the petroleum fuel in the United States, it would require 15,000 square miles (38,849 square kilometers), which is roughly the size of Maryland.
Second and third generation biofuels are also called advanced biofuels.
Algae, such as Botryococcus braunii and Chlorella vulgaris, are relatively easy to grow,[38] but the algal oil is hard to extract. There are several approaches, some of which work better than others.
Macroalgae (seaweed) also have a great potential for bioethanol and biogas production.
http://en.wikipedia.org/wiki/Biofuel
No comments:
Post a Comment